Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d2_noneq_variable_8.m @ 1325:1b0f2415237f feature/D2_boundary_opt
Add variable coefficient boundary-optimized second derivatives.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 13 Feb 2022 19:32:34 +0100 |
parents | |
children | c2d716c4f1ed |
comparison
equal
deleted
inserted
replaced
1301:8978521b0f06 | 1325:1b0f2415237f |
---|---|
1 function [H, HI, D1, D2, DI] = d2_noneq_variable_8(N, h, options) | |
2 % N: Number of grid points | |
3 % h: grid spacing | |
4 % options: struct containing options for constructing the operator | |
5 % current options are: | |
6 % options.stencil_type ('minimal','nonminimal','wide') | |
7 % options.AD ('upwind', 'op') | |
8 | |
9 % BP: Number of boundary points | |
10 % order: Accuracy of interior stencil | |
11 BP = 8; | |
12 order = 8; | |
13 | |
14 %%%% Norm matrix %%%%%%%% | |
15 P = zeros(BP, 1); | |
16 P0 = 1.0758368078310e-01; | |
17 P1 = 6.1909685107891e-01; | |
18 P2 = 9.6971176519117e-01; | |
19 P3 = 1.1023441350947e+00; | |
20 P4 = 1.0244688965833e+00; | |
21 P5 = 9.9533550116831e-01; | |
22 P6 = 1.0008236941028e+00; | |
23 P7 = 9.9992060631812e-01; | |
24 | |
25 for i = 0:BP - 1 | |
26 P(i + 1) = eval(['P' num2str(i)]); | |
27 end | |
28 | |
29 Hv = ones(N, 1); | |
30 Hv(1:BP) = P; | |
31 Hv(end - BP + 1:end) = flip(P); | |
32 Hv = h * Hv; | |
33 H = spdiags(Hv, 0, N, N); | |
34 HI = spdiags(1 ./ Hv, 0, N, N); | |
35 %%%%%%%%%%%%%%%%%%%%%%%%% | |
36 | |
37 %%%% Q matrix %%%%%%%%%%% | |
38 | |
39 % interior stencil | |
40 d = [1/280, -4/105, 1/5, -4/5, 0, 4/5, -1/5, 4/105, -1/280]; | |
41 d = repmat(d, N, 1); | |
42 Q = spdiags(d, -order / 2:order / 2, N, N); | |
43 | |
44 % Boundaries | |
45 Q0_0 = -5.0000000000000e-01; | |
46 Q0_1 = 6.7284756079369e-01; | |
47 Q0_2 = -2.5969732837062e-01; | |
48 Q0_3 = 1.3519390385721e-01; | |
49 Q0_4 = -6.9678474730984e-02; | |
50 Q0_5 = 2.6434024071371e-02; | |
51 Q0_6 = -5.5992311465618e-03; | |
52 Q0_7 = 4.9954552590464e-04; | |
53 Q0_8 = 0.0000000000000e+00; | |
54 Q0_9 = 0.0000000000000e+00; | |
55 Q0_10 = 0.0000000000000e+00; | |
56 Q0_11 = 0.0000000000000e+00; | |
57 Q1_0 = -6.7284756079369e-01; | |
58 Q1_1 = 0.0000000000000e+00; | |
59 Q1_2 = 9.4074021172233e-01; | |
60 Q1_3 = -4.0511642426516e-01; | |
61 Q1_4 = 1.9369192209331e-01; | |
62 Q1_5 = -6.8638079843479e-02; | |
63 Q1_6 = 1.3146457241484e-02; | |
64 Q1_7 = -9.7652615479254e-04; | |
65 Q1_8 = 0.0000000000000e+00; | |
66 Q1_9 = 0.0000000000000e+00; | |
67 Q1_10 = 0.0000000000000e+00; | |
68 Q1_11 = 0.0000000000000e+00; | |
69 Q2_0 = 2.5969732837062e-01; | |
70 Q2_1 = -9.4074021172233e-01; | |
71 Q2_2 = 0.0000000000000e+00; | |
72 Q2_3 = 9.4316393361096e-01; | |
73 Q2_4 = -3.5728039257451e-01; | |
74 Q2_5 = 1.1266686855013e-01; | |
75 Q2_6 = -1.8334941452280e-02; | |
76 Q2_7 = 8.2741521740941e-04; | |
77 Q2_8 = 0.0000000000000e+00; | |
78 Q2_9 = 0.0000000000000e+00; | |
79 Q2_10 = 0.0000000000000e+00; | |
80 Q2_11 = 0.0000000000000e+00; | |
81 Q3_0 = -1.3519390385721e-01; | |
82 Q3_1 = 4.0511642426516e-01; | |
83 Q3_2 = -9.4316393361096e-01; | |
84 Q3_3 = 0.0000000000000e+00; | |
85 Q3_4 = 8.7694387866575e-01; | |
86 Q3_5 = -2.4698058719506e-01; | |
87 Q3_6 = 4.7291642094198e-02; | |
88 Q3_7 = -4.0135203618880e-03; | |
89 Q3_8 = 0.0000000000000e+00; | |
90 Q3_9 = 0.0000000000000e+00; | |
91 Q3_10 = 0.0000000000000e+00; | |
92 Q3_11 = 0.0000000000000e+00; | |
93 Q4_0 = 6.9678474730984e-02; | |
94 Q4_1 = -1.9369192209331e-01; | |
95 Q4_2 = 3.5728039257451e-01; | |
96 Q4_3 = -8.7694387866575e-01; | |
97 Q4_4 = 0.0000000000000e+00; | |
98 Q4_5 = 8.1123946853807e-01; | |
99 Q4_6 = -2.0267150541446e-01; | |
100 Q4_7 = 3.8680398901392e-02; | |
101 Q4_8 = -3.5714285714286e-03; | |
102 Q4_9 = 0.0000000000000e+00; | |
103 Q4_10 = 0.0000000000000e+00; | |
104 Q4_11 = 0.0000000000000e+00; | |
105 Q5_0 = -2.6434024071371e-02; | |
106 Q5_1 = 6.8638079843479e-02; | |
107 Q5_2 = -1.1266686855013e-01; | |
108 Q5_3 = 2.4698058719506e-01; | |
109 Q5_4 = -8.1123946853807e-01; | |
110 Q5_5 = 0.0000000000000e+00; | |
111 Q5_6 = 8.0108544742793e-01; | |
112 Q5_7 = -2.0088756283071e-01; | |
113 Q5_8 = 3.8095238095238e-02; | |
114 Q5_9 = -3.5714285714286e-03; | |
115 Q5_10 = 0.0000000000000e+00; | |
116 Q5_11 = 0.0000000000000e+00; | |
117 Q6_0 = 5.5992311465618e-03; | |
118 Q6_1 = -1.3146457241484e-02; | |
119 Q6_2 = 1.8334941452280e-02; | |
120 Q6_3 = -4.7291642094198e-02; | |
121 Q6_4 = 2.0267150541446e-01; | |
122 Q6_5 = -8.0108544742793e-01; | |
123 Q6_6 = 0.0000000000000e+00; | |
124 Q6_7 = 8.0039405922650e-01; | |
125 Q6_8 = -2.0000000000000e-01; | |
126 Q6_9 = 3.8095238095238e-02; | |
127 Q6_10 = -3.5714285714286e-03; | |
128 Q6_11 = 0.0000000000000e+00; | |
129 Q7_0 = -4.9954552590464e-04; | |
130 Q7_1 = 9.7652615479254e-04; | |
131 Q7_2 = -8.2741521740941e-04; | |
132 Q7_3 = 4.0135203618880e-03; | |
133 Q7_4 = -3.8680398901392e-02; | |
134 Q7_5 = 2.0088756283071e-01; | |
135 Q7_6 = -8.0039405922650e-01; | |
136 Q7_7 = 0.0000000000000e+00; | |
137 Q7_8 = 8.0000000000000e-01; | |
138 Q7_9 = -2.0000000000000e-01; | |
139 Q7_10 = 3.8095238095238e-02; | |
140 Q7_11 = -3.5714285714286e-03; | |
141 | |
142 for i = 1:BP | |
143 | |
144 for j = 1:BP | |
145 Q(i, j) = eval(['Q' num2str(i - 1) '_' num2str(j - 1)]); | |
146 Q(N + 1 - i, N + 1 - j) = -eval(['Q' num2str(i - 1) '_' num2str(j - 1)]); | |
147 end | |
148 | |
149 end | |
150 | |
151 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
152 | |
153 %%% Undivided difference operators %%%% | |
154 % Closed with zeros at the first boundary nodes. | |
155 m = N; | |
156 | |
157 DD_4 = (diag(ones(m - 2, 1), 2) - 4 * diag(ones(m - 1, 1), 1) + 6 * diag(ones(m, 1), 0) - 4 * diag(ones(m - 1, 1), -1) + diag(ones(m - 2, 1), -2)); | |
158 DD_4(1:6, 1:8) = [0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; 0.70921010190504348684e1 -0.14196080536361841322e2 0.11072881931325435634e2 -0.50473576941871051066e1 0.10784552801730759259e1 0 0 0; 0 0.13740993382151221352e1 -0.42105600869792757010e1 0.54761010136211975317e1 -0.35797005751940657417e1 0.94006031033702177578e0 0 0; 0 0 0.82467928104463767301e0 -0.33274694995849432461e1 0.52587584638857303123e1 -0.37020511582893568152e1 0.94608291294393207601e0 0; 0 0 0 0.86436129166612654748e0 -0.37325441295306179390e1 0.57924699560798105338e1 -0.39066885960487908497e1 0.98240147783347170744e0; ]; | |
159 DD_4(m - 5:m, m - 7:m) = [0.98240147783347170744e0 -0.39066885960487908497e1 0.57924699560798105338e1 -0.37325441295306179390e1 0.86436129166612654748e0 0 0 0; 0 0.94608291294393207601e0 -0.37020511582893568152e1 0.52587584638857303123e1 -0.33274694995849432461e1 0.82467928104463767301e0 0 0; 0 0 0.94006031033702177578e0 -0.35797005751940657417e1 0.54761010136211975317e1 -0.42105600869792757010e1 0.13740993382151221352e1 0; 0 0 0 0.10784552801730759259e1 -0.50473576941871051066e1 0.11072881931325435634e2 -0.14196080536361841322e2 0.70921010190504348684e1; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; ]; | |
160 DD_4 = sparse(DD_4); | |
161 | |
162 DD_5 = (-diag(ones(m - 3, 1), -3) + 5 * diag(ones(m - 2, 1), -2) - 10 * diag(ones(m - 1, 1), -1) + 10 * diag(ones(m, 1), 0) - 5 * diag(ones(m - 1, 1), 1) + diag(ones(m - 2, 1), 2)); | |
163 DD_5(1:7, 1:9) = [0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; -0.82098088052411907132e1 0.18024024120655590699e2 -0.17692096674769448317e2 0.12181944917152947702e2 -0.53922764008653796295e1 0.10882128430674802600e1 0 0 0; 0 -0.13913240333052950751e1 0.50983574122643719988e1 -0.89139255753021486176e1 0.89492514379851643542e1 -0.47003015516851088789e1 0.95794231004301621873e0 0 0; 0 0 -0.80388595981635823711e0 0.40861386922975635215e1 -0.87645974398095505205e1 0.92551278957233920380e1 -0.47304145647196603800e1 0.95763137632461357808e0 0; 0 0 0 -0.85214912336218661144e0 0.46656801619132724238e1 -0.96541165934663508896e1 0.97667214901219771242e1 -0.49120073891673585372e1 0.98587145396064649030e0; ]; | |
164 DD_5(m - 5:m, m - 8:m) = [-0.98587145396064649030e0 0.49120073891673585372e1 -0.97667214901219771242e1 0.96541165934663508896e1 -0.46656801619132724238e1 0.85214912336218661144e0 0 0 0; 0 -0.95763137632461357808e0 0.47304145647196603800e1 -0.92551278957233920380e1 0.87645974398095505205e1 -0.40861386922975635215e1 0.80388595981635823711e0 0 0; 0 0 -0.95794231004301621873e0 0.47003015516851088789e1 -0.89492514379851643542e1 0.89139255753021486176e1 -0.50983574122643719988e1 0.13913240333052950751e1 0; 0 0 0 -0.10882128430674802600e1 0.53922764008653796295e1 -0.12181944917152947702e2 0.17692096674769448317e2 -0.18024024120655590699e2 0.82098088052411907132e1; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; ]; | |
165 DD_5 = sparse(DD_5); | |
166 | |
167 DD_6 = (diag(ones(m - 3, 1), 3) - 6 * diag(ones(m - 2, 1), 2) + 15 * diag(ones(m - 1, 1), 1) - 20 * diag(ones(m, 1), 0) + 15 * diag(ones(m - 1, 1), -1) - 6 * diag(ones(m - 2, 1), -2) + diag(ones(m - 3, 1), -3)); | |
168 DD_6(1:7, 1:10) = [0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0; 0.92604272237009487731e1 -0.21899951980342041757e2 0.25706973995952182034e2 -0.23795532642767976509e2 0.16176829202596138889e2 -0.65292770584048815597e1 0.10805312592656301300e1 0 0 0; 0 0.14058275749850312569e1 -0.59637699688344396810e1 0.13135580487711615439e2 -0.17898502875970328708e2 0.14100904655055326637e2 -0.57476538602580973124e1 0.96761398731089236944e0 0 0; 0 0 0.78692381135906040550e0 -0.48340889923923043812e1 0.13146896159714325781e2 -0.18510255791446784076e2 0.14191243694158981140e2 -0.57457882579476814685e1 0.96506937655440259938e0 0; 0 0 0 0.84209241882516286974e0 -0.55988161942959269085e1 0.14481174890199526334e2 -0.19533442980243954248e2 0.14736022167502075612e2 -0.59152287237638789418e1 0.98819842177699528293e0; ]; | |
169 DD_6(m - 6:m, m - 9:m) = [0.98819842177699528293e0 -0.59152287237638789418e1 0.14736022167502075612e2 -0.19533442980243954248e2 0.14481174890199526334e2 -0.55988161942959269085e1 0.84209241882516286974e0 0 0 0; 0 0.96506937655440259938e0 -0.57457882579476814685e1 0.14191243694158981140e2 -0.18510255791446784076e2 0.13146896159714325781e2 -0.48340889923923043812e1 0.78692381135906040550e0 0 0; 0 0 0.96761398731089236944e0 -0.57476538602580973124e1 0.14100904655055326637e2 -0.17898502875970328708e2 0.13135580487711615439e2 -0.59637699688344396810e1 0.14058275749850312569e1 0; 0 0 0 0.10805312592656301300e1 -0.65292770584048815597e1 0.16176829202596138889e2 -0.23795532642767976509e2 0.25706973995952182034e2 -0.21899951980342041757e2 0.92604272237009487731e1; 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0; ]; | |
170 DD_6 = sparse(DD_6); | |
171 | |
172 DD_7 = (-diag(ones(m - 4, 1), -4) + 7 * diag(ones(m - 3, 1), -3) - 21 * diag(ones(m - 2, 1), -2) + 35 * diag(ones(m - 1, 1), -1) - 35 * diag(ones(m, 1), 0) + 21 * diag(ones(m - 1, 1), 1) - 7 * diag(ones(m - 2, 1), 2) + diag(ones(m - 3, 1), 3)); | |
173 DD_7(1:8, 1:11) = [0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0; -0.10257962606384161889e2 0.25816283570514673553e2 -0.35082323899232605336e2 0.40909341259657284245e2 -0.37745934806057657407e2 0.22852469704417085459e2 -0.75637188148594109098e1 0.10718455919447922848e1 0 0 0; 0 -0.14183700945143243060e1 0.68109221539151178574e1 -0.18129991367652287552e2 0.31322380032948075240e2 -0.32902110861795762152e2 0.20116788510903340593e2 -0.67732979111762465861e1 0.97367953737208690559e0 0 0; 0 0 -0.77264857229409862775e0 0.55732122985135573041e1 -0.18405654623600056093e2 0.32392947635031872133e2 -0.33112901953037622660e2 0.20110258902816885140e2 -0.67554856358808181957e1 0.97027194845028099974e0 0; 0 0 0 -0.83355973075426177031e0 0.65319522266785813933e1 -0.20273644846279336868e2 0.34183525215426919935e2 -0.34384051724171509761e2 0.20703300533173576296e2 -0.69173889524389669805e1 0.98986727836499775519e0; ]; | |
174 DD_7(m - 6:m, m - 10:m) = [-0.98986727836499775519e0 0.69173889524389669805e1 -0.20703300533173576296e2 0.34384051724171509761e2 -0.34183525215426919935e2 0.20273644846279336868e2 -0.65319522266785813933e1 0.83355973075426177031e0 0 0 0; 0 -0.97027194845028099974e0 0.67554856358808181957e1 -0.20110258902816885140e2 0.33112901953037622660e2 -0.32392947635031872133e2 0.18405654623600056093e2 -0.55732122985135573041e1 0.77264857229409862775e0 0 0; 0 0 -0.97367953737208690559e0 0.67732979111762465861e1 -0.20116788510903340593e2 0.32902110861795762152e2 -0.31322380032948075240e2 0.18129991367652287552e2 -0.68109221539151178574e1 0.14183700945143243060e1 0; 0 0 0 -0.10718455919447922848e1 0.75637188148594109098e1 -0.22852469704417085459e2 0.37745934806057657407e2 -0.40909341259657284245e2 0.35082323899232605336e2 -0.25816283570514673553e2 0.10257962606384161889e2; 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0; ]; | |
175 DD_7 = sparse(DD_7); | |
176 | |
177 DD_8 = (diag(ones(m - 4, 1), 4) - 8 * diag(ones(m - 3, 1), 3) + 28 * diag(ones(m - 2, 1), 2) - 56 * diag(ones(m - 1, 1), 1) + 70 * diag(ones(m, 1), 0) - 56 * diag(ones(m - 1, 1), -1) + 28 * diag(ones(m - 2, 1), -2) - 8 * diag(ones(m - 3, 1), -3) + diag(ones(m - 4, 1), -4)); | |
178 DD_8(1:8, 1:12) = [0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0; 0.11211983054345146839e2 -0.29767555907566203748e2 0.45789440151310044599e2 -0.64530162797168947524e2 0.75491869612115314813e2 -0.60939919211778894557e2 0.30254875259437643639e2 -0.85747647355583382784e1 0.10642345748642342173e1 0 0 0; 0 0.14294303785648149613e1 -0.76427065234692260122e1 0.23888038475126051744e2 -0.50115808052716920383e2 0.65804221723591524304e2 -0.53644769362408908249e2 0.27093191644704986344e2 -0.77894362989766952447e1 0.97783801558437253538e0 0 0; 0 0 0.76035645561041265933e0 -0.63048462739199410204e1 0.24540872831466741457e2 -0.51828716216050995413e2 0.66225803906075245320e2 -0.53627357074178360373e2 0.27021942543523272783e2 -0.77621755876022479980e1 0.97411941507587258409e0 0; 0 0 0 0.82615990808320718845e0 -0.74650882590612358780e1 0.27031526461705782491e2 -0.54693640344683071895e2 0.68768103448343019521e2 -0.55208801421796203457e2 0.27669555809755867922e2 -0.79189382269199820415e1 0.99112262457261614959e0; ]; | |
179 DD_8(m - 7:m, m - 11:m) = [0.99112262457261614959e0 -0.79189382269199820415e1 0.27669555809755867922e2 -0.55208801421796203457e2 0.68768103448343019521e2 -0.54693640344683071895e2 0.27031526461705782491e2 -0.74650882590612358780e1 0.82615990808320718845e0 0 0 0; 0 0.97411941507587258409e0 -0.77621755876022479980e1 0.27021942543523272783e2 -0.53627357074178360373e2 0.66225803906075245320e2 -0.51828716216050995413e2 0.24540872831466741457e2 -0.63048462739199410204e1 0.76035645561041265933e0 0 0; 0 0 0.97783801558437253538e0 -0.77894362989766952447e1 0.27093191644704986344e2 -0.53644769362408908249e2 0.65804221723591524304e2 -0.50115808052716920383e2 0.23888038475126051744e2 -0.76427065234692260122e1 0.14294303785648149613e1 0; 0 0 0 0.10642345748642342173e1 -0.85747647355583382784e1 0.30254875259437643639e2 -0.60939919211778894557e2 0.75491869612115314813e2 -0.64530162797168947524e2 0.45789440151310044599e2 -0.29767555907566203748e2 0.11211983054345146839e2; 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0; ]; | |
180 DD_8 = sparse(DD_8); | |
181 | |
182 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
183 | |
184 %%%% Difference operators %% | |
185 D1 = H \ Q; | |
186 | |
187 % Helper functions for constructing D2(c) | |
188 % TODO: Consider changing sparse(diag(...)) to spdiags(....) | |
189 | |
190 % Minimal 9 point stencil width | |
191 function D2 = D2_fun_minimal(c) | |
192 % Here we add variable diffusion | |
193 C1 = sparse(diag(c)); | |
194 C2 = 1/2 * diag(ones(m - 1, 1), -1) + 1/2 * diag(ones(m, 1), 0); C2(1, 2) = 1/2; | |
195 C3 = 3/10 * diag(ones(m - 1, 1), -1) + 3/10 * diag(ones(m - 1, 1), 1) + 2/5 * diag(ones(m, 1), 0); C3(1, 3) = 3/10; C3(m, m - 2) = 3/10; | |
196 C4 = 1/4 * diag(ones(m - 2, 1), -2) + 1/4 * diag(ones(m - 1, 1), -1) + 1/4 * diag(ones(m - 1, 1), 1) + 1/4 * diag(ones(m, 1), 0); C4(2, 4) = 1/4; C4(1, 3) = 1/4; C4(1, 4) = 1/4; C4(m, m - 2) = 1/4; C4(m, m - 3) = 1/4; | |
197 | |
198 C2 = sparse(diag(C2 * c)); | |
199 C3 = sparse(diag(C3 * c)); | |
200 C4 = sparse(diag(C4 * c)); | |
201 | |
202 % Remainder term added to wide second derivative operator | |
203 R = (1/78400 / h) * transpose(DD_8) * C1 * DD_8 + (1/14700 / h) * transpose(DD_7) * C2 * DD_7 + (1/2520 / h) * transpose(DD_6) * C3 * DD_6 + (1/350 / h) * transpose(DD_5) * C4 * DD_5; | |
204 | |
205 D2 = D1 * C1 * D1 - H \ R; | |
206 end | |
207 | |
208 % Few additional grid point in interior stencil cmp. to minimal | |
209 function D2 = D2_fun_nonminimal(c) | |
210 % Here we add variable diffusion | |
211 C1 = sparse(diag(c)); | |
212 C2 = 1/2 * diag(ones(m - 1, 1), -1) + 1/2 * diag(ones(m, 1), 0); C2(1, 2) = 1/2; | |
213 C3 = 3/10 * diag(ones(m - 1, 1), -1) + 3/10 * diag(ones(m - 1, 1), 1) + 2/5 * diag(ones(m, 1), 0); C3(1, 3) = 3/10; C3(m, m - 2) = 3/10; | |
214 | |
215 C2 = sparse(diag(C2 * c)); | |
216 C3 = sparse(diag(C3 * c)); | |
217 | |
218 % Remainder term added to wide second derivative operator | |
219 R = (1/78400 / h) * transpose(DD_8) * C1 * DD_8 + (1/14700 / h) * transpose(DD_7) * C2 * DD_7 + (1/2520 / h) * transpose(DD_6) * C3 * DD_6; | |
220 D2 = D1 * C1 * D1 - H \ R; | |
221 end | |
222 | |
223 % Wide stencil | |
224 function D2 = D2_wide(c) | |
225 % Here we add variable diffusion | |
226 C1 = sparse(diag(c)); | |
227 D2 = D1 * C1 * D1; | |
228 end | |
229 | |
230 switch options.stencil_width | |
231 case 'minimal' | |
232 D2 = @D2_fun_minimal; | |
233 case 'nonminimal' | |
234 D2 = @D2_fun_nonminimal; | |
235 case 'wide' | |
236 D2 = @D2_fun_wide; | |
237 otherwise | |
238 error('No option %s for stencil width', options.stencil_width) | |
239 end | |
240 | |
241 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
242 | |
243 %%%% Artificial dissipation operator %%% | |
244 switch options.AD | |
245 case 'upwind' | |
246 % This is the choice that yield 7th order Upwind | |
247 DI = H \ (transpose(DD_4) * DD_4) * (-1/280); | |
248 case 'op' | |
249 % This choice will preserve the order of the underlying | |
250 % Non-dissipative D1 SBP operator | |
251 DI = H \ (transpose(DD_5) * DD_5) * (-1 / (5 * 280)); | |
252 % Notice that you can use any negative number instead of (-1/(5*280)) | |
253 otherwise | |
254 error("Artificial dissipation options '%s' not implemented.", option.AD) | |
255 end | |
256 | |
257 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
258 end |