Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_noneq_minimal_10.m @ 1300:196123459178
Merge in feature/boundary_optimized_grids
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 08 Jul 2020 18:22:54 +0200 |
parents | 4cb627c7fb90 |
children |
comparison
equal
deleted
inserted
replaced
1250:8ec777fb473e | 1300:196123459178 |
---|---|
1 function [D1,H,x,h] = d1_noneq_minimal_10(N,L) | 1 function [D1,H] = d1_noneq_minimal_10(N,h) |
2 | 2 |
3 % L: Domain length | |
4 % N: Number of grid points | 3 % N: Number of grid points |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 if(N<16) | 4 if(N<16) |
10 error('Operator requires at least 16 grid points'); | 5 error('Operator requires at least 16 grid points'); |
11 end | 6 end |
12 | 7 |
13 % BP: Number of boundary points | 8 % BP: Number of boundary points |
14 % m: Number of nonequidistant spacings | |
15 % order: Accuracy of interior stencil | |
16 BP = 8; | 9 BP = 8; |
17 m = 3; | |
18 order = 10; | |
19 | |
20 %%%% Non-equidistant grid points %%%%% | |
21 x0 = 0.0000000000000e+00; | |
22 x1 = 5.8556160757529e-01; | |
23 x2 = 1.7473267488572e+00; | |
24 x3 = 3.0000000000000e+00; | |
25 x4 = 4.0000000000000e+00; | |
26 x5 = 5.0000000000000e+00; | |
27 x6 = 6.0000000000000e+00; | |
28 x7 = 7.0000000000000e+00; | |
29 x8 = 8.0000000000000e+00; | |
30 | |
31 xb = sparse(m+1,1); | |
32 for i = 0:m | |
33 xb(i+1) = eval(['x' num2str(i)]); | |
34 end | |
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
36 | |
37 %%%% Compute h %%%%%%%%%% | |
38 h = L/(2*xb(end) + N-1-2*m); | |
39 %%%%%%%%%%%%%%%%%%%%%%%%% | |
40 | |
41 %%%% Define grid %%%%%%%% | |
42 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
43 %%%%%%%%%%%%%%%%%%%%%%%%% | |
44 | 10 |
45 %%%% Norm matrix %%%%%%%% | 11 %%%% Norm matrix %%%%%%%% |
46 P = sparse(BP,1); | 12 P = sparse(BP,1); |
47 %#ok<*NASGU> | 13 %#ok<*NASGU> |
48 P0 = 1.6717213975289e-01; | 14 P0 = 1.6717213975289e-01; |
63 H(end-BP+1:end) = flip(P); | 29 H(end-BP+1:end) = flip(P); |
64 H = spdiags(h*H,0,N,N); | 30 H = spdiags(h*H,0,N,N); |
65 %%%%%%%%%%%%%%%%%%%%%%%%% | 31 %%%%%%%%%%%%%%%%%%%%%%%%% |
66 | 32 |
67 %%%% Q matrix %%%%%%%%%%% | 33 %%%% Q matrix %%%%%%%%%%% |
68 | |
69 % interior stencil | 34 % interior stencil |
70 switch order | 35 order = 10; |
71 case 2 | 36 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; |
72 d = [-1/2,0,1/2]; | |
73 case 4 | |
74 d = [1/12,-2/3,0,2/3,-1/12]; | |
75 case 6 | |
76 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
77 case 8 | |
78 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
79 case 10 | |
80 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
81 case 12 | |
82 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
83 end | |
84 d = repmat(d,N,1); | 37 d = repmat(d,N,1); |
85 Q = spdiags(d,-order/2:order/2,N,N); | 38 Q = spdiags(d,-order/2:order/2,N,N); |
86 | 39 |
87 % Boundaries | 40 % Boundaries |
88 Q0_0 = -5.0000000000000e-01; | 41 Q0_0 = -5.0000000000000e-01; |