Mercurial > repos > public > sbplib
comparison +time/+rk/ButcherTableau.m @ 990:1066bb31bc95 feature/timesteppers
Create class for butcher tableau
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 09 Jan 2019 09:09:15 +0100 |
parents | |
children | 2f89959fb9f0 |
comparison
equal
deleted
inserted
replaced
989:e41c93d7ab08 | 990:1066bb31bc95 |
---|---|
1 classdef ButcherTableau | |
2 properties | |
3 a,b,c | |
4 end | |
5 | |
6 methods | |
7 % A ButcherTableau describes a specific rungekutta method where | |
8 % y(n+1) = y(n) + dt*b(i)*k(i) | |
9 % k(i) = F(t + c(i)*dt, Y(i)) | |
10 % Y(i) = y(i) + dt*a(i,j)*k(j) | |
11 % where repeating indecies imply summation | |
12 function obj = ButcherTableau(a,b,c) | |
13 s = length(c); | |
14 assertSize(a, [s,s]); | |
15 assertLength(b, s); | |
16 | |
17 obj.a = a; | |
18 obj.b = b; | |
19 obj.c = c; | |
20 end | |
21 | |
22 function s = nStages(obj) | |
23 s = length(obj.c); | |
24 end | |
25 | |
26 function b = isExplicit(obj) | |
27 b = all(all(triu(obj.a)==0)); | |
28 end | |
29 | |
30 % TBD: Add functions for checking accuracy, stability? | |
31 end | |
32 | |
33 methods(Static) | |
34 % TVD (Total Variational Diminishing) | |
35 function bt = tvd_3() | |
36 a = [ | |
37 0, 0, 0; | |
38 1, 0, 0; | |
39 1/4, 1/4, 0; | |
40 ]; | |
41 b = [1/6, 1/6, 2/3]; | |
42 c = [0 1 1/2]; | |
43 | |
44 bt = time.rk.ButcherTableau(a,b,c); | |
45 end | |
46 | |
47 % Standard RK4 | |
48 function bt = rk4() | |
49 a = [ | |
50 0, 0, 0, 0; | |
51 1/2, 0, 0, 0; | |
52 0, 1/2, 0, 0; | |
53 0, 0, 1, 0; | |
54 ]; | |
55 | |
56 b = [1/6 1/3 1/3 1/6]; | |
57 c = [0, 1/2, 1/2, 1]; | |
58 | |
59 bt = time.rk.ButcherTableau(a,b,c); | |
60 end | |
61 | |
62 % 3/8 RK4 (Kuttas method). Lower truncation error, more flops. | |
63 % Irreducible, unlike standard rk4. | |
64 function bt = rk4_3_8() | |
65 a = [ | |
66 0, 0, 0, 0; | |
67 1/3, 0, 0, 0; | |
68 -1/3, 1, 0, 0; | |
69 1, -1, 1, 0; | |
70 ]; | |
71 | |
72 b = [1/8 3/8 3/8 1/8]; | |
73 c = [0, 1/3, 2/3, 1]; | |
74 | |
75 bt = time.rk.ButcherTableau(a,b,c); | |
76 end | |
77 | |
78 % Runge-Kutta 6 from Alshina07 | |
79 function bt = rk6() | |
80 a = zeros(7,7); | |
81 | |
82 a(2,1) = 4/7; | |
83 | |
84 a(3,1) = 115/112; | |
85 a(3,2) = -5/16; | |
86 | |
87 a(4,1) = 589/630; | |
88 a(4,2) = 5/18; | |
89 a(4,3) = -16/45; | |
90 | |
91 a(5,1) = 229/1200 - 29/6000*sqrt(5); | |
92 a(5,2) = 119/240 - 187/1200*sqrt(5); | |
93 a(5,3) = -14/75 + 34/375*sqrt(5); | |
94 a(5,4) = -3/100*sqrt(5); | |
95 | |
96 a(6,1) = 71/2400 - 587/12000*sqrt(5); | |
97 a(6,2) = 187/480 - 391/2400*sqrt(5); | |
98 a(6,3) = -38/75 + 26/375*sqrt(5); | |
99 a(6,4) = 27/80 - 3/400*sqrt(5); | |
100 a(6,5) = (1+sqrt(5))/4 | |
101 | |
102 a(7,1) = -49/480 + 43/160*sqrt(5); | |
103 a(7,2) = -425/96 + 51/32*sqrt(5); | |
104 a(7,3) = 52/15 - 4/5*sqrt(5); | |
105 a(7,4) = -27/16 + 3/16*sqrt(5); | |
106 a(7,5) = 5/4 - 3/4*sqrt(5); | |
107 a(7,6) = 5/2 - 1/2*sqrt(5); | |
108 | |
109 b = [1/12 0 0 0 5/12 5/12 1/12]; | |
110 c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1]; | |
111 | |
112 bt = time.rk.ButcherTableau(a,b,c); | |
113 end | |
114 end | |
115 end |