Mercurial > repos > public > sbplib
comparison +sbp/D1_minimal_10th_8BP_3shifts.m @ 252:07fa0d6a05bb operator_remake
Renamned class files and added nonequidistant operators.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Wed, 07 Sep 2016 13:40:41 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
251:6a5e94bb5e13 | 252:07fa0d6a05bb |
---|---|
1 function [D1,H,x,h] = D1_minimal_10th_8BP_3shifts(N,L) | |
2 | |
3 % L: Domain length | |
4 % N: Number of grid points | |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 % BP: Number of boundary points | |
10 % m: Number of nonequidistant spacings | |
11 % order: Accuracy of interior stencil | |
12 BP = 8; | |
13 m = 3; | |
14 order = 10; | |
15 | |
16 %%%% Non-equidistant grid points %%%%% | |
17 x0 = 0.0000000000000e+00; | |
18 x1 = 5.8556160757529e-01; | |
19 x2 = 1.7473267488572e+00; | |
20 x3 = 3.0000000000000e+00; | |
21 x4 = 4.0000000000000e+00; | |
22 x5 = 5.0000000000000e+00; | |
23 x6 = 6.0000000000000e+00; | |
24 x7 = 7.0000000000000e+00; | |
25 x8 = 8.0000000000000e+00; | |
26 | |
27 xb = zeros(m+1,1); | |
28 for i = 0:m | |
29 xb(i+1) = eval(['x' num2str(i)]); | |
30 end | |
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
32 | |
33 %%%% Compute h %%%%%%%%%% | |
34 h = L/(2*xb(end) + N-1-2*m); | |
35 %%%%%%%%%%%%%%%%%%%%%%%%% | |
36 | |
37 %%%% Define grid %%%%%%%% | |
38 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
39 %%%%%%%%%%%%%%%%%%%%%%%%% | |
40 | |
41 %%%% Norm matrix %%%%%%%% | |
42 P = zeros(BP,1); | |
43 %#ok<*NASGU> | |
44 P0 = 1.6717213975289e-01; | |
45 P1 = 9.3675739171278e-01; | |
46 P2 = 1.3035532379753e+00; | |
47 P3 = 1.1188461804303e+00; | |
48 P4 = 9.6664345922660e-01; | |
49 P5 = 1.0083235564392e+00; | |
50 P6 = 9.9858767377362e-01; | |
51 P7 = 1.0001163606893e+00; | |
52 | |
53 for i = 0:BP-1 | |
54 P(i+1) = eval(['P' num2str(i)]); | |
55 end | |
56 | |
57 H = ones(N,1); | |
58 H(1:BP) = P; | |
59 H(end-BP+1:end) = flip(P); | |
60 H = spdiags(h*H,0,N,N); | |
61 %%%%%%%%%%%%%%%%%%%%%%%%% | |
62 | |
63 %%%% Q matrix %%%%%%%%%%% | |
64 | |
65 % interior stencil | |
66 switch order | |
67 case 2 | |
68 d = [-1/2,0,1/2]; | |
69 case 4 | |
70 d = [1/12,-2/3,0,2/3,-1/12]; | |
71 case 6 | |
72 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
73 case 8 | |
74 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
75 case 10 | |
76 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
77 case 12 | |
78 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
79 end | |
80 d = repmat(d,N,1); | |
81 Q = spdiags(d,-order/2:order/2,N,N); | |
82 | |
83 % Boundaries | |
84 Q0_0 = -5.0000000000000e-01; | |
85 Q0_1 = 6.7349296966214e-01; | |
86 Q0_2 = -2.5186401896559e-01; | |
87 Q0_3 = 8.3431385420901e-02; | |
88 Q0_4 = 2.5480326895984e-02; | |
89 Q0_5 = -4.5992420658252e-02; | |
90 Q0_6 = 1.7526412909003e-02; | |
91 Q0_7 = -2.0746552641799e-03; | |
92 Q0_8 = 0.0000000000000e+00; | |
93 Q0_9 = 0.0000000000000e+00; | |
94 Q0_10 = 0.0000000000000e+00; | |
95 Q0_11 = 0.0000000000000e+00; | |
96 Q0_12 = 0.0000000000000e+00; | |
97 Q1_0 = -6.7349296966214e-01; | |
98 Q1_1 = 0.0000000000000e+00; | |
99 Q1_2 = 9.1982892384044e-01; | |
100 Q1_3 = -2.7262271754043e-01; | |
101 Q1_4 = -5.0992113348238e-02; | |
102 Q1_5 = 1.1814647281129e-01; | |
103 Q1_6 = -4.6693123378079e-02; | |
104 Q1_7 = 5.8255272771571e-03; | |
105 Q1_8 = 0.0000000000000e+00; | |
106 Q1_9 = 0.0000000000000e+00; | |
107 Q1_10 = 0.0000000000000e+00; | |
108 Q1_11 = 0.0000000000000e+00; | |
109 Q1_12 = 0.0000000000000e+00; | |
110 Q2_0 = 2.5186401896559e-01; | |
111 Q2_1 = -9.1982892384044e-01; | |
112 Q2_2 = 0.0000000000000e+00; | |
113 Q2_3 = 7.8566746772741e-01; | |
114 Q2_4 = -2.4097806629929e-02; | |
115 Q2_5 = -1.5312168858669e-01; | |
116 Q2_6 = 6.9451518963875e-02; | |
117 Q2_7 = -9.9345865998262e-03; | |
118 Q2_8 = 0.0000000000000e+00; | |
119 Q2_9 = 0.0000000000000e+00; | |
120 Q2_10 = 0.0000000000000e+00; | |
121 Q2_11 = 0.0000000000000e+00; | |
122 Q2_12 = 0.0000000000000e+00; | |
123 Q3_0 = -8.3431385420901e-02; | |
124 Q3_1 = 2.7262271754043e-01; | |
125 Q3_2 = -7.8566746772741e-01; | |
126 Q3_3 = 0.0000000000000e+00; | |
127 Q3_4 = 6.2047871210535e-01; | |
128 Q3_5 = 1.4776775176509e-02; | |
129 Q3_6 = -4.6889652372990e-02; | |
130 Q3_7 = 7.3166499053672e-03; | |
131 Q3_8 = 7.9365079365079e-04; | |
132 Q3_9 = 0.0000000000000e+00; | |
133 Q3_10 = 0.0000000000000e+00; | |
134 Q3_11 = 0.0000000000000e+00; | |
135 Q3_12 = 0.0000000000000e+00; | |
136 Q4_0 = -2.5480326895984e-02; | |
137 Q4_1 = 5.0992113348238e-02; | |
138 Q4_2 = 2.4097806629929e-02; | |
139 Q4_3 = -6.2047871210535e-01; | |
140 Q4_4 = 0.0000000000000e+00; | |
141 Q4_5 = 6.9425006383507e-01; | |
142 Q4_6 = -1.5686345740485e-01; | |
143 Q4_7 = 4.2609496719925e-02; | |
144 Q4_8 = -9.9206349206349e-03; | |
145 Q4_9 = 7.9365079365079e-04; | |
146 Q4_10 = 0.0000000000000e+00; | |
147 Q4_11 = 0.0000000000000e+00; | |
148 Q4_12 = 0.0000000000000e+00; | |
149 Q5_0 = 4.5992420658252e-02; | |
150 Q5_1 = -1.1814647281129e-01; | |
151 Q5_2 = 1.5312168858669e-01; | |
152 Q5_3 = -1.4776775176509e-02; | |
153 Q5_4 = -6.9425006383507e-01; | |
154 Q5_5 = 0.0000000000000e+00; | |
155 Q5_6 = 8.0719535654891e-01; | |
156 Q5_7 = -2.2953297936781e-01; | |
157 Q5_8 = 5.9523809523809e-02; | |
158 Q5_9 = -9.9206349206349e-03; | |
159 Q5_10 = 7.9365079365079e-04; | |
160 Q5_11 = 0.0000000000000e+00; | |
161 Q5_12 = 0.0000000000000e+00; | |
162 Q6_0 = -1.7526412909003e-02; | |
163 Q6_1 = 4.6693123378079e-02; | |
164 Q6_2 = -6.9451518963875e-02; | |
165 Q6_3 = 4.6889652372990e-02; | |
166 Q6_4 = 1.5686345740485e-01; | |
167 Q6_5 = -8.0719535654891e-01; | |
168 Q6_6 = 0.0000000000000e+00; | |
169 Q6_7 = 8.3142546796428e-01; | |
170 Q6_8 = -2.3809523809524e-01; | |
171 Q6_9 = 5.9523809523809e-02; | |
172 Q6_10 = -9.9206349206349e-03; | |
173 Q6_11 = 7.9365079365079e-04; | |
174 Q6_12 = 0.0000000000000e+00; | |
175 Q7_0 = 2.0746552641799e-03; | |
176 Q7_1 = -5.8255272771571e-03; | |
177 Q7_2 = 9.9345865998262e-03; | |
178 Q7_3 = -7.3166499053672e-03; | |
179 Q7_4 = -4.2609496719925e-02; | |
180 Q7_5 = 2.2953297936781e-01; | |
181 Q7_6 = -8.3142546796428e-01; | |
182 Q7_7 = 0.0000000000000e+00; | |
183 Q7_8 = 8.3333333333333e-01; | |
184 Q7_9 = -2.3809523809524e-01; | |
185 Q7_10 = 5.9523809523809e-02; | |
186 Q7_11 = -9.9206349206349e-03; | |
187 Q7_12 = 7.9365079365079e-04; | |
188 for i = 1:BP | |
189 for j = 1:BP | |
190 Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
191 Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
192 end | |
193 end | |
194 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
195 | |
196 %%%% Difference operator %% | |
197 D1 = H\Q; | |
198 %%%%%%%%%%%%%%%%%%%%%%%%%%% |