Mercurial > repos > public > sbplib
comparison +scheme/Elastic2dVariableAnisotropicUpwind.m @ 1227:02dfe3a56742 feature/poroelastic
Add Upwind ElasticAnisotropic schemes. Seem to work really well!
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sat, 16 Nov 2019 14:26:06 -0800 |
parents | |
children | b5025bd67be1 |
comparison
equal
deleted
inserted
replaced
1214:e1d4cb8b5309 | 1227:02dfe3a56742 |
---|---|
1 classdef Elastic2dVariableAnisotropicUpwind < scheme.Scheme | |
2 | |
3 % Discretizes the elastic wave equation: | |
4 % rho u_{i,tt} = dj C_{ijkl} dk u_j | |
5 % opSet should be cell array of opSets, one per dimension. This | |
6 % is useful if we have periodic BC in one direction. | |
7 % Assumes fully compatible operators | |
8 | |
9 properties | |
10 m % Number of points in each direction, possibly a vector | |
11 h % Grid spacing | |
12 | |
13 grid | |
14 dim | |
15 | |
16 order % Order of accuracy for the approximation | |
17 | |
18 % Diagonal matrices for variable coefficients | |
19 RHO, RHOi, RHOi_kron % Density | |
20 C % Elastic stiffness tensor | |
21 | |
22 D % Total operator | |
23 Dp, Dm % First derivatives | |
24 | |
25 % Boundary operators in cell format, used for BC | |
26 T_w, T_e, T_s, T_n | |
27 | |
28 % Traction operators | |
29 tau_w, tau_e, tau_s, tau_n % Return vector field | |
30 tau1_w, tau1_e, tau1_s, tau1_n % Return scalar field | |
31 tau2_w, tau2_e, tau2_s, tau2_n % Return scalar field | |
32 | |
33 % Inner products | |
34 H, Hi, Hi_kron, H_1D | |
35 | |
36 % Boundary inner products (for scalar field) | |
37 H_w, H_e, H_s, H_n | |
38 | |
39 % Boundary restriction operators | |
40 e_w, e_e, e_s, e_n % Act on vector field, return vector field at boundary | |
41 e1_w, e1_e, e1_s, e1_n % Act on vector field, return scalar field at boundary | |
42 e2_w, e2_e, e2_s, e2_n % Act on vector field, return scalar field at boundary | |
43 e_scalar_w, e_scalar_e, e_scalar_s, e_scalar_n; % Act on scalar field, return scalar field | |
44 | |
45 % E{i}^T picks out component i | |
46 E | |
47 | |
48 % Borrowing constants of the form gamma*h, where gamma is a dimensionless constant. | |
49 h11 % First entry in norm matrix | |
50 | |
51 end | |
52 | |
53 methods | |
54 | |
55 % The coefficients can either be function handles or grid functions | |
56 % optFlag -- if true, extra computations are performed, which may be helpful for optimization. | |
57 function obj = Elastic2dVariableAnisotropicUpwind(g, order, rho, C, opSet, optFlag) | |
58 default_arg('rho', @(x,y) 0*x+1); | |
59 default_arg('opSet',{@sbp.D1Upwind, @sbp.D1Upwind}); | |
60 default_arg('optFlag', false); | |
61 dim = 2; | |
62 | |
63 C_default = cell(dim,dim,dim,dim); | |
64 for i = 1:dim | |
65 for j = 1:dim | |
66 for k = 1:dim | |
67 for l = 1:dim | |
68 C_default{i,j,k,l} = @(x,y) 0*x + 1; | |
69 end | |
70 end | |
71 end | |
72 end | |
73 default_arg('C', C_default); | |
74 assert(isa(g, 'grid.Cartesian')) | |
75 | |
76 if isa(rho, 'function_handle') | |
77 rho = grid.evalOn(g, rho); | |
78 end | |
79 | |
80 C_mat = cell(dim,dim,dim,dim); | |
81 for i = 1:dim | |
82 for j = 1:dim | |
83 for k = 1:dim | |
84 for l = 1:dim | |
85 if isa(C{i,j,k,l}, 'function_handle') | |
86 C{i,j,k,l} = grid.evalOn(g, C{i,j,k,l}); | |
87 end | |
88 C_mat{i,j,k,l} = spdiag(C{i,j,k,l}); | |
89 end | |
90 end | |
91 end | |
92 end | |
93 obj.C = C_mat; | |
94 | |
95 m = g.size(); | |
96 m_tot = g.N(); | |
97 lim = g.lim; | |
98 if isempty(lim) | |
99 x = g.x; | |
100 lim = cell(length(x),1); | |
101 for i = 1:length(x) | |
102 lim{i} = {min(x{i}), max(x{i})}; | |
103 end | |
104 end | |
105 | |
106 % 1D operators | |
107 ops = cell(dim,1); | |
108 h = zeros(dim,1); | |
109 for i = 1:dim | |
110 ops{i} = opSet{i}(m(i), lim{i}, order); | |
111 h(i) = ops{i}.h; | |
112 end | |
113 | |
114 % Borrowing constants | |
115 for i = 1:dim | |
116 obj.h11{i} = ops{i}.H(1,1); | |
117 end | |
118 | |
119 I = cell(dim,1); | |
120 Dp = cell(dim,1); | |
121 Dm = cell(dim,1); | |
122 H = cell(dim,1); | |
123 Hi = cell(dim,1); | |
124 e_0 = cell(dim,1); | |
125 e_m = cell(dim,1); | |
126 d1_0 = cell(dim,1); | |
127 d1_m = cell(dim,1); | |
128 | |
129 for i = 1:dim | |
130 I{i} = speye(m(i)); | |
131 Dp{i} = ops{i}.Dp; | |
132 Dm{i} = ops{i}.Dm; | |
133 H{i} = ops{i}.H; | |
134 Hi{i} = ops{i}.HI; | |
135 e_0{i} = ops{i}.e_l; | |
136 e_m{i} = ops{i}.e_r; | |
137 d1_0{i} = (ops{i}.e_l' * Dm{i})'; | |
138 d1_m{i} = (ops{i}.e_r' * Dm{i})'; | |
139 end | |
140 | |
141 %====== Assemble full operators ======== | |
142 I_dim = speye(dim, dim); | |
143 RHO = spdiag(rho); | |
144 obj.RHO = RHO; | |
145 obj.RHOi = inv(RHO); | |
146 obj.RHOi_kron = kron(obj.RHOi, I_dim); | |
147 | |
148 obj.Dp = cell(dim,1); | |
149 obj.Dm = cell(dim,1); | |
150 | |
151 % D1 | |
152 obj.Dp{1} = kron(Dp{1},I{2}); | |
153 obj.Dp{2} = kron(I{1},Dp{2}); | |
154 obj.Dm{1} = kron(Dm{1},I{2}); | |
155 obj.Dm{2} = kron(I{1},Dm{2}); | |
156 | |
157 % Boundary restriction operators | |
158 e_l = cell(dim,1); | |
159 e_r = cell(dim,1); | |
160 e_l{1} = kron(e_0{1}, I{2}); | |
161 e_l{2} = kron(I{1}, e_0{2}); | |
162 e_r{1} = kron(e_m{1}, I{2}); | |
163 e_r{2} = kron(I{1}, e_m{2}); | |
164 | |
165 e_scalar_w = e_l{1}; | |
166 e_scalar_e = e_r{1}; | |
167 e_scalar_s = e_l{2}; | |
168 e_scalar_n = e_r{2}; | |
169 | |
170 e_w = kron(e_scalar_w, I_dim); | |
171 e_e = kron(e_scalar_e, I_dim); | |
172 e_s = kron(e_scalar_s, I_dim); | |
173 e_n = kron(e_scalar_n, I_dim); | |
174 | |
175 % E{i}^T picks out component i. | |
176 E = cell(dim,1); | |
177 I = speye(m_tot,m_tot); | |
178 for i = 1:dim | |
179 e = sparse(dim,1); | |
180 e(i) = 1; | |
181 E{i} = kron(I,e); | |
182 end | |
183 obj.E = E; | |
184 | |
185 e1_w = (e_scalar_w'*E{1}')'; | |
186 e1_e = (e_scalar_e'*E{1}')'; | |
187 e1_s = (e_scalar_s'*E{1}')'; | |
188 e1_n = (e_scalar_n'*E{1}')'; | |
189 | |
190 e2_w = (e_scalar_w'*E{2}')'; | |
191 e2_e = (e_scalar_e'*E{2}')'; | |
192 e2_s = (e_scalar_s'*E{2}')'; | |
193 e2_n = (e_scalar_n'*E{2}')'; | |
194 | |
195 % Quadratures | |
196 obj.H = kron(H{1},H{2}); | |
197 obj.Hi = inv(obj.H); | |
198 obj.H_w = H{2}; | |
199 obj.H_e = H{2}; | |
200 obj.H_s = H{1}; | |
201 obj.H_n = H{1}; | |
202 obj.H_1D = {H{1}, H{2}}; | |
203 | |
204 % Differentiation matrix D (without SAT) | |
205 Dp = obj.Dp; | |
206 Dm = obj.Dm; | |
207 D = sparse(dim*m_tot,dim*m_tot); | |
208 for i = 1:dim | |
209 for j = 1:dim | |
210 for k = 1:dim | |
211 for l = 1:dim | |
212 D = D + E{j}*Dp{i}*C_mat{i,j,k,l}*Dm{k}*E{l}'; | |
213 end | |
214 end | |
215 end | |
216 end | |
217 D = obj.RHOi_kron*D; | |
218 obj.D = D; | |
219 %=========================================%' | |
220 | |
221 % Numerical traction operators for BC. | |
222 % | |
223 % Formula at boundary j: % tau^{j}_i = sum_l T^{j}_{il} u_l | |
224 % | |
225 T_l = cell(dim,1); | |
226 T_r = cell(dim,1); | |
227 tau_l = cell(dim,1); | |
228 tau_r = cell(dim,1); | |
229 | |
230 D1 = obj.Dm; | |
231 | |
232 % Boundary j | |
233 for j = 1:dim | |
234 T_l{j} = cell(dim,dim); | |
235 T_r{j} = cell(dim,dim); | |
236 tau_l{j} = cell(dim,1); | |
237 tau_r{j} = cell(dim,1); | |
238 | |
239 [~, n_l] = size(e_l{j}); | |
240 [~, n_r] = size(e_r{j}); | |
241 | |
242 % Traction component i | |
243 for i = 1:dim | |
244 tau_l{j}{i} = sparse(dim*m_tot, n_l); | |
245 tau_r{j}{i} = sparse(dim*m_tot, n_r); | |
246 | |
247 % Displacement component l | |
248 for l = 1:dim | |
249 T_l{j}{i,l} = sparse(m_tot, n_l); | |
250 T_r{j}{i,l} = sparse(m_tot, n_r); | |
251 | |
252 % Derivative direction k | |
253 for k = 1:dim | |
254 T_l{j}{i,l} = T_l{j}{i,l} ... | |
255 - (e_l{j}'*C_mat{j,i,k,l}*D1{k})'; | |
256 T_r{j}{i,l} = T_r{j}{i,l} ... | |
257 + (e_r{j}'*C_mat{j,i,k,l}*D1{k})'; | |
258 end | |
259 tau_l{j}{i} = tau_l{j}{i} + (T_l{j}{i,l}'*E{l}')'; | |
260 tau_r{j}{i} = tau_r{j}{i} + (T_r{j}{i,l}'*E{l}')'; | |
261 end | |
262 end | |
263 end | |
264 | |
265 % Traction tensors, T_ij | |
266 obj.T_w = T_l{1}; | |
267 obj.T_e = T_r{1}; | |
268 obj.T_s = T_l{2}; | |
269 obj.T_n = T_r{2}; | |
270 | |
271 % Restriction operators | |
272 obj.e_w = e_w; | |
273 obj.e_e = e_e; | |
274 obj.e_s = e_s; | |
275 obj.e_n = e_n; | |
276 | |
277 obj.e1_w = e1_w; | |
278 obj.e1_e = e1_e; | |
279 obj.e1_s = e1_s; | |
280 obj.e1_n = e1_n; | |
281 | |
282 obj.e2_w = e2_w; | |
283 obj.e2_e = e2_e; | |
284 obj.e2_s = e2_s; | |
285 obj.e2_n = e2_n; | |
286 | |
287 obj.e_scalar_w = e_scalar_w; | |
288 obj.e_scalar_e = e_scalar_e; | |
289 obj.e_scalar_s = e_scalar_s; | |
290 obj.e_scalar_n = e_scalar_n; | |
291 | |
292 % First component of traction | |
293 obj.tau1_w = tau_l{1}{1}; | |
294 obj.tau1_e = tau_r{1}{1}; | |
295 obj.tau1_s = tau_l{2}{1}; | |
296 obj.tau1_n = tau_r{2}{1}; | |
297 | |
298 % Second component of traction | |
299 obj.tau2_w = tau_l{1}{2}; | |
300 obj.tau2_e = tau_r{1}{2}; | |
301 obj.tau2_s = tau_l{2}{2}; | |
302 obj.tau2_n = tau_r{2}{2}; | |
303 | |
304 % Traction vectors | |
305 obj.tau_w = (e_w'*e1_w*obj.tau1_w')' + (e_w'*e2_w*obj.tau2_w')'; | |
306 obj.tau_e = (e_e'*e1_e*obj.tau1_e')' + (e_e'*e2_e*obj.tau2_e')'; | |
307 obj.tau_s = (e_s'*e1_s*obj.tau1_s')' + (e_s'*e2_s*obj.tau2_s')'; | |
308 obj.tau_n = (e_n'*e1_n*obj.tau1_n')' + (e_n'*e2_n*obj.tau2_n')'; | |
309 | |
310 % Kroneckered norms and coefficients | |
311 obj.Hi_kron = kron(obj.Hi, I_dim); | |
312 | |
313 % Misc. | |
314 obj.m = m; | |
315 obj.h = h; | |
316 obj.order = order; | |
317 obj.grid = g; | |
318 obj.dim = dim; | |
319 | |
320 end | |
321 | |
322 | |
323 % Closure functions return the operators applied to the own domain to close the boundary | |
324 % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
325 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
326 % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition | |
327 % on the first component. Can also be e.g. | |
328 % {'normal', 'd'} or {'tangential', 't'} for conditions on | |
329 % tangential/normal component. | |
330 % data is a function returning the data that should be applied at the boundary. | |
331 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
332 % neighbour_boundary is a string specifying which boundary to interface to. | |
333 | |
334 % For displacement bc: | |
335 % bc = {comp, 'd', dComps}, | |
336 % where | |
337 % dComps = vector of components with displacement BC. Default: 1:dim. | |
338 % In this way, we can specify one BC at a time even though the SATs depend on all BC. | |
339 function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) | |
340 default_arg('tuning', 1.0); | |
341 | |
342 assert( iscell(bc), 'The BC type must be a 2x1 or 3x1 cell array' ); | |
343 comp = bc{1}; | |
344 type = bc{2}; | |
345 if ischar(comp) | |
346 comp = obj.getComponent(comp, boundary); | |
347 end | |
348 | |
349 e = obj.getBoundaryOperatorForScalarField('e', boundary); | |
350 tau = obj.getBoundaryOperator(['tau' num2str(comp)], boundary); | |
351 T = obj.getBoundaryTractionOperator(boundary); | |
352 h11 = obj.getBorrowing(boundary); | |
353 H_gamma = obj.getBoundaryQuadratureForScalarField(boundary); | |
354 nu = obj.getNormal(boundary); | |
355 | |
356 E = obj.E; | |
357 Hi = obj.Hi; | |
358 RHOi = obj.RHOi; | |
359 C = obj.C; | |
360 | |
361 dim = obj.dim; | |
362 m_tot = obj.grid.N(); | |
363 | |
364 % Preallocate | |
365 [~, col] = size(tau); | |
366 closure = sparse(dim*m_tot, dim*m_tot); | |
367 penalty = sparse(dim*m_tot, col); | |
368 | |
369 j = comp; | |
370 switch type | |
371 | |
372 % Dirichlet boundary condition | |
373 case {'D','d','dirichlet','Dirichlet','displacement','Displacement'} | |
374 | |
375 if numel(bc) >= 3 | |
376 dComps = bc{3}; | |
377 else | |
378 dComps = 1:dim; | |
379 end | |
380 | |
381 % Loops over components that Dirichlet penalties end up on | |
382 % Y: symmetrizing part of penalty | |
383 % Z: symmetric part of penalty | |
384 % X = Y + Z. | |
385 | |
386 % Nonsymmetric part goes on all components to | |
387 % yield traction in discrete energy rate | |
388 for i = 1:dim | |
389 Y = T{j,i}'; | |
390 X = e*Y; | |
391 closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' ); | |
392 penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma; | |
393 end | |
394 | |
395 % Symmetric part only required on components with displacement BC. | |
396 % (Otherwise it's not symmetric.) | |
397 for i = dComps | |
398 Z = sparse(m_tot, m_tot); | |
399 for l = 1:dim | |
400 for k = 1:dim | |
401 Z = Z + nu(l)*C{l,i,k,j}*nu(k); | |
402 end | |
403 end | |
404 Z = -tuning*dim/h11*Z; | |
405 X = Z; | |
406 closure = closure + E{i}*RHOi*Hi*X'*e*H_gamma*(e'*E{j}' ); | |
407 penalty = penalty - E{i}*RHOi*Hi*X'*e*H_gamma; | |
408 end | |
409 | |
410 % Free boundary condition | |
411 case {'F','f','Free','free','traction','Traction','t','T'} | |
412 closure = closure - E{j}*RHOi*Hi*e*H_gamma*tau'; | |
413 penalty = penalty + E{j}*RHOi*Hi*e*H_gamma; | |
414 | |
415 % Unknown boundary condition | |
416 otherwise | |
417 error('No such boundary condition: type = %s',type); | |
418 end | |
419 end | |
420 | |
421 % type Struct that specifies the interface coupling. | |
422 % Fields: | |
423 % -- tuning: penalty strength, defaults to 1.0 | |
424 % -- interpolation: type of interpolation, default 'none' | |
425 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
426 | |
427 defaultType.tuning = 1.0; | |
428 defaultType.interpolation = 'none'; | |
429 default_struct('type', defaultType); | |
430 | |
431 switch type.interpolation | |
432 case {'none', ''} | |
433 [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
434 case {'op','OP'} | |
435 [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
436 otherwise | |
437 error('Unknown type of interpolation: %s ', type.interpolation); | |
438 end | |
439 end | |
440 | |
441 function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
442 tuning = type.tuning; | |
443 | |
444 % u denotes the solution in the own domain | |
445 % v denotes the solution in the neighbour domain | |
446 | |
447 u = obj; | |
448 v = neighbour_scheme; | |
449 | |
450 % Operators, u side | |
451 e_u = u.getBoundaryOperatorForScalarField('e', boundary); | |
452 tau_u = u.getBoundaryOperator('tau', boundary); | |
453 h11_u = u.getBorrowing(boundary); | |
454 nu_u = u.getNormal(boundary); | |
455 | |
456 E_u = u.E; | |
457 C_u = u.C; | |
458 m_tot_u = u.grid.N(); | |
459 | |
460 % Operators, v side | |
461 e_v = v.getBoundaryOperatorForScalarField('e', neighbour_boundary); | |
462 tau_v = v.getBoundaryOperator('tau', neighbour_boundary); | |
463 h11_v = v.getBorrowing(neighbour_boundary); | |
464 nu_v = v.getNormal(neighbour_boundary); | |
465 | |
466 E_v = v.E; | |
467 C_v = v.C; | |
468 m_tot_v = v.grid.N(); | |
469 | |
470 % Operators that are only required for own domain | |
471 Hi = u.Hi_kron; | |
472 RHOi = u.RHOi_kron; | |
473 e_kron = u.getBoundaryOperator('e', boundary); | |
474 T_u = u.getBoundaryTractionOperator(boundary); | |
475 | |
476 % Shared operators | |
477 H_gamma = u.getBoundaryQuadratureForScalarField(boundary); | |
478 H_gamma_kron = u.getBoundaryQuadrature(boundary); | |
479 dim = u.dim; | |
480 | |
481 % Preallocate | |
482 [~, m_int] = size(H_gamma); | |
483 closure = sparse(dim*m_tot_u, dim*m_tot_u); | |
484 penalty = sparse(dim*m_tot_u, dim*m_tot_v); | |
485 | |
486 % ---- Continuity of displacement ------ | |
487 | |
488 % Y: symmetrizing part of penalty | |
489 % Z: symmetric part of penalty | |
490 % X = Y + Z. | |
491 | |
492 % Loop over components to couple across interface | |
493 for j = 1:dim | |
494 | |
495 % Loop over components that penalties end up on | |
496 for i = 1:dim | |
497 Y = 1/2*T_u{j,i}'; | |
498 Z_u = sparse(m_int, m_int); | |
499 Z_v = sparse(m_int, m_int); | |
500 for l = 1:dim | |
501 for k = 1:dim | |
502 Z_u = Z_u + e_u'*nu_u(l)*C_u{l,i,k,j}*nu_u(k)*e_u; | |
503 Z_v = Z_v + e_v'*nu_v(l)*C_v{l,i,k,j}*nu_v(k)*e_v; | |
504 end | |
505 end | |
506 Z = -tuning*dim*( 1/(4*h11_u)*Z_u + 1/(4*h11_v)*Z_v ); | |
507 X = Y + Z*e_u'; | |
508 closure = closure + E_u{i}*X'*H_gamma*e_u'*E_u{j}'; | |
509 penalty = penalty - E_u{i}*X'*H_gamma*e_v'*E_v{j}'; | |
510 end | |
511 end | |
512 | |
513 % ---- Continuity of traction ------ | |
514 closure = closure - 1/2*e_kron*H_gamma_kron*tau_u'; | |
515 penalty = penalty - 1/2*e_kron*H_gamma_kron*tau_v'; | |
516 | |
517 % ---- Multiply by inverse of density x quadraure ---- | |
518 closure = RHOi*Hi*closure; | |
519 penalty = RHOi*Hi*penalty; | |
520 | |
521 end | |
522 | |
523 function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
524 error('Non-conforming interfaces not implemented yet.'); | |
525 end | |
526 | |
527 % Returns the component number that is the tangential/normal component | |
528 % at the specified boundary | |
529 function comp = getComponent(obj, comp_str, boundary) | |
530 assertIsMember(comp_str, {'normal', 'tangential'}); | |
531 assertIsMember(boundary, {'w', 'e', 's', 'n'}); | |
532 | |
533 switch boundary | |
534 case {'w', 'e'} | |
535 switch comp_str | |
536 case 'normal' | |
537 comp = 1; | |
538 case 'tangential' | |
539 comp = 2; | |
540 end | |
541 case {'s', 'n'} | |
542 switch comp_str | |
543 case 'normal' | |
544 comp = 2; | |
545 case 'tangential' | |
546 comp = 1; | |
547 end | |
548 end | |
549 end | |
550 | |
551 % Returns h11 for the boundary specified by the string boundary. | |
552 % op -- string | |
553 function h11 = getBorrowing(obj, boundary) | |
554 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
555 | |
556 switch boundary | |
557 case {'w','e'} | |
558 h11 = obj.h11{1}; | |
559 case {'s', 'n'} | |
560 h11 = obj.h11{2}; | |
561 end | |
562 end | |
563 | |
564 % Returns the outward unit normal vector for the boundary specified by the string boundary. | |
565 function nu = getNormal(obj, boundary) | |
566 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
567 | |
568 switch boundary | |
569 case 'w' | |
570 nu = [-1,0]; | |
571 case 'e' | |
572 nu = [1,0]; | |
573 case 's' | |
574 nu = [0,-1]; | |
575 case 'n' | |
576 nu = [0,1]; | |
577 end | |
578 end | |
579 | |
580 % Returns the boundary operator op for the boundary specified by the string boundary. | |
581 % op -- string | |
582 function o = getBoundaryOperator(obj, op, boundary) | |
583 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
584 assertIsMember(op, {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'}) | |
585 | |
586 switch op | |
587 case {'e', 'e1', 'e2', 'tau', 'tau1', 'tau2'} | |
588 o = obj.([op, '_', boundary]); | |
589 end | |
590 | |
591 end | |
592 | |
593 % Returns the boundary operator op for the boundary specified by the string boundary. | |
594 % op -- string | |
595 function o = getBoundaryOperatorForScalarField(obj, op, boundary) | |
596 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
597 assertIsMember(op, {'e'}) | |
598 | |
599 switch op | |
600 | |
601 case 'e' | |
602 o = obj.(['e_scalar', '_', boundary]); | |
603 end | |
604 | |
605 end | |
606 | |
607 % Returns the boundary operator T_ij (cell format) for the boundary specified by the string boundary. | |
608 % Formula: tau_i = T_ij u_j | |
609 % op -- string | |
610 function T = getBoundaryTractionOperator(obj, boundary) | |
611 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
612 | |
613 T = obj.(['T', '_', boundary]); | |
614 end | |
615 | |
616 % Returns square boundary quadrature matrix, of dimension | |
617 % corresponding to the number of boundary unknowns | |
618 % | |
619 % boundary -- string | |
620 function H = getBoundaryQuadrature(obj, boundary) | |
621 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
622 | |
623 H = obj.getBoundaryQuadratureForScalarField(boundary); | |
624 I_dim = speye(obj.dim, obj.dim); | |
625 H = kron(H, I_dim); | |
626 end | |
627 | |
628 % Returns square boundary quadrature matrix, of dimension | |
629 % corresponding to the number of boundary grid points | |
630 % | |
631 % boundary -- string | |
632 function H_b = getBoundaryQuadratureForScalarField(obj, boundary) | |
633 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
634 | |
635 H_b = obj.(['H_', boundary]); | |
636 end | |
637 | |
638 function N = size(obj) | |
639 N = obj.dim*prod(obj.m); | |
640 end | |
641 end | |
642 end |