Mercurial > repos > public > sbplib
comparison +rv/+time/RungekuttaInteriorRv.m @ 1152:010bb2677230 feature/rv
Clean up in +rv/+time. Make the time stepping more efficient by not storing unnessecary properties in the RK-RV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 05 Mar 2019 10:53:34 +0100 |
parents | 2ef20d00b386 |
children |
comparison
equal
deleted
inserted
replaced
1151:03ecf18d035f | 1152:010bb2677230 |
---|---|
6 v % Solution vector | 6 v % Solution vector |
7 n % Time level | 7 n % Time level |
8 coeffs % The coefficents used for the RK time integration | 8 coeffs % The coefficents used for the RK time integration |
9 RV % Residual Viscosity | 9 RV % Residual Viscosity |
10 DvDt % Function for computing the time deriative used for the RV evaluation | 10 DvDt % Function for computing the time deriative used for the RV evaluation |
11 | |
12 % Convenience properties. Only for plotting | |
13 viscosity % Total viscosity | |
14 residualViscosity % Residual viscosity | |
15 firstOrderViscosity % first order viscosity | |
16 dvdt % Evaluated time derivative in residual | |
17 Df % Evaluated flux in residual | |
18 end | 11 end |
19 | 12 |
20 methods | 13 methods |
21 function obj = RungekuttaInteriorRv(F, k, t0, v0, RV, DvDt, order) | 14 function obj = RungekuttaInteriorRv(F, k, t0, v0, RV, DvDt, order) |
22 obj.F = F; | 15 obj.F = F; |
28 % used for the RK updates from the Butcher tableua. | 21 % used for the RK updates from the Butcher tableua. |
29 [s,a,b,c] = time.rk.butcherTableau(order); | 22 [s,a,b,c] = time.rk.butcherTableau(order); |
30 obj.coeffs = struct('s',s,'a',a,'b',b,'c',c); | 23 obj.coeffs = struct('s',s,'a',a,'b',b,'c',c); |
31 obj.RV = RV; | 24 obj.RV = RV; |
32 obj.DvDt = DvDt; | 25 obj.DvDt = DvDt; |
33 obj.dvdt = obj.DvDt(obj.v); | |
34 [obj.viscosity, obj.Df, obj.firstOrderViscosity, obj.residualViscosity] = obj.RV.evaluate(obj.v,obj.dvdt); | |
35 end | 26 end |
36 | 27 |
37 function [v, t] = getV(obj) | 28 function [v, t] = getV(obj) |
38 v = obj.v; | 29 v = obj.v; |
39 t = obj.t; | 30 t = obj.t; |
40 end | 31 end |
41 | 32 |
42 function state = getState(obj) | 33 function state = getState(obj) |
43 state = struct('v', obj.v, 'dvdt', obj.dvdt, 'Df', obj.Df, 'viscosity', obj.viscosity, 'residualViscosity', obj.residualViscosity, 'firstOrderViscosity', obj.firstOrderViscosity, 't', obj.t); | 34 dvdt = obj.DvDt(obj.v); |
35 [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt); | |
36 state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t); | |
44 end | 37 end |
45 | 38 |
39 % Advances the solution vector one time step using the Runge-Kutta method given by | |
40 % obj.coeffs, updating the Residual Viscosity in each Runge-Kutta stage | |
46 function obj = step(obj) | 41 function obj = step(obj) |
47 obj.v = rv.time.rungekuttaRV(obj.v, obj.t, obj.k, obj.F, obj.RV, obj.DvDt, obj.coeffs); | 42 obj.v = rv.time.rungekuttaRV(obj.v, obj.t, obj.k, obj.F, obj.RV, obj.DvDt, obj.coeffs); |
48 obj.t = obj.t + obj.k; | 43 obj.t = obj.t + obj.k; |
49 obj.n = obj.n + 1; | 44 obj.n = obj.n + 1; |
50 obj.dvdt = obj.DvDt(obj.v); | |
51 [obj.viscosity, obj.Df, obj.firstOrderViscosity, obj.residualViscosity] = obj.RV.evaluate(obj.v,obj.dvdt); | |
52 end | 45 end |
53 end | 46 end |
54 end | 47 end |