annotate +time/+cdiff/cdiff.m @ 852:fbb8be3177c8
feature/burgers1d
Fix bug in SAT terms for upwind operators
- Set the appropriate boundary derivatives in respect to choice of upwind discretization of D2
- Distinguish between upwind discretizations e.g upwind+ vs upwind-
author |
Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
date |
Thu, 27 Sep 2018 09:30:21 +0200 |
parents |
48b6fb693025 |
children |
|
rev |
line source |
0
|
1 % Takes a step of
|
|
2 % v_tt = Dv+Ev_t+S
|
|
3 %
|
|
4 % 1/k^2 * (v_next - 2v + v_prev) = Dv + E 1/(2k)(v_next - v_prev) + S
|
|
5 %
|
|
6 function [v_next, v] = cdiff(v, v_prev, k, D, E, S)
|
|
7 % 1/k^2 * (v_next - 2v + v_prev) = Dv + E 1/(2k)(v_next - v_prev) + S
|
|
8 % ekv to
|
|
9 % A v_next = B v + C v_prev + S
|
|
10 I = speye(size(D));
|
|
11 A = 1/k^2 * I - 1/(2*k)*E;
|
|
12 B = 2/k^2 * I + D;
|
|
13 C = -1/k^2 * I - 1/(2*k)*E;
|
|
14
|
|
15 v_next = A\(B*v + C*v_prev + S);
|
|
16 end |